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Fast Fourier transform computational method for the propagation of electromagnetic pulses
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A computational method is developed for solving the wave equation for the propagation of a pulse
through layered dielectric media. The method is based on an ansatz for evaluating fields in each layer
after a temporal interval dt using a Fourier method. The resulting spatial fields represent the solution to
the wave equation provided dt is small enough that many temporal intervals are required for the passage

of the pulse through a boundary.

PACS number(s): 02.70.—c, 41.20.Jb

I. INTRODUCTION

Many problems in electromagnetic propagation involve
passing a pulse through regions of uniform dielectric
separated by sharp boundaries [1]. If the radiation could
be described by plane waves, then such a problem would
be analytically solvable. However, for pulses, numerical
methods are used, and finite-difference methods that
solve the coupled first-order, vector Maxwell equations,
with explicit boundary matching, seem to be in wide use
[1]. In this paper we propose and benchmark (albeit for
the scalar and two-component wave equations) a method
that takes full advantage of the nature of the problem,
namely, regions of uniform dielectric separated by sharp
boundaries. The method is based on an ansatz that
Maxwell’s equations in Fourier-transform space,
comprising a set for each dielectric region, which are
solved analytically in the time, can be propagated
throughout the entire region, with satisfaction of the
boundary conditions to high accuracy, simply by back-
transforming each set exclusively into its own region of
dielectric. This solution is accomplished over a series of
temporal intervals dt, where high accuracy is obtained
provided many intervals are used to pass the pulse
through a boundary or series of boundaries. Thus the
pulse width should be large compared to a distance vdt,
where v is some average phase velocity appropriate for
the dielectric media in the vicinity of the pulse. The
pulse does not have to be large compared to a wavelength
[i.e., the method is not a slowly varying envelope approxi-
mation in time (SVEAT) [2]], and the method preserves
the phase velocity of the pulse in each region to high ac-
curacy (the average velocity referred to above being sim-
ply a parameter used to define a characteristic distance
over a temporal interval).

The equation one must solve subject to appropriate
boundary conditions is

P g 1 8%, = =~
[V'E-V(V-E)——5 > (eE)]=0. (1)
c” ot
It is no problem to solve this equation exactly for the
propagation of monochromatic fields, ie.,
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(3%/3t%)(eE)= —ew’E, and one can solve an equation
like this one for each frequency ® and match the solu-
tions appropriately at the boundaries. However, this
method becomes inefficient for a broadband pulse. Our
method is most appropriate therefore for pulses a few
wavelengths long (wide bandwidth).

The presence of a function of space, namely, the dielec-
tric function ¢, in the term containing the time derivative
puts the equation in a nonstandard form with respect to
numerical algorithms developed in optical physics [2].
For example, the field can be expanded,

E=1(ge “'+c.c.), (2a)

where o is the carrier frequency of the incident field, and
on substitution into Eq. (1) one makes the SVEAT [2] ap-
proximation by dropping the second-order time deriva-
tive of the envelope €, which is now assumed to be many
wavelengths long, as small compared to o times the first-
order time derivative of the envelope. The dielectric
function is written e =n2=1+44y, where n is the index
of refraction and Y is the linear susceptibility. The polar-
ization is defined as P=YE. Then in the SVEAT devel-
opment [2] one has the equation

9’ 9? i

St_zP: —5z—2()(8e ‘@ltcc.) . (2b)
In SVEAT [2] one can formally drop Yo times the first-
order time derivative of the envelope as small compared
to Yo’ times the envelope. This puts the equation in the
standard parabolic or Schrodinger form [2]; however, the
inherent error in this procedure is that the parabolic
equation makes the pulse move at the same average ve-
locity in all media. Different media correspond to
different phase velocities. If only a small change in re-
fractive index occurs in passing from one medium into
another, then this is not a serious error in the usual
SVEAT [2].

Nonlinear optical effects can be included in our formu-
lation by operator splitting. That is, one alternates be-
tween small time steps of free propagation and nonlinear
phase accumulation [3]. This approach is already com-
mon in situations such as harmonic generation or optical
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parametric amplification, in which the total field cannot
be described by a single slowly varying envelope.

Our method depends on our ability to Fourier trans-
form Maxwell’s equations in space at an initial time.
Then we use these wave amplitudes to represent the field
in each layer, although at initial time these layers are at
some distance from an initial layer (air, for example) con-
taining the initial pulse. We then solve these equations
analytically in transform space for each dielectric layer
over a time interval dt and backtransform into each re-
gion of separate dielectric to reconstruct the spatial field.
This procedure is repeated for each dt interval—one for-
ward transform over all space and j backtransforms into j
separate dielectric layers. The resulting spatial field
passes smoothly through the various boundaries and ac-
curately represent a solution to Maxwell’s equations if dt
is small enough that the passage of a pulse through a
boundary takes place over many dt intervals. In practice
this means that cdt /n,, <<w, where n,, is the average of
the different dielectric constants of two or more layers
and w is the width of the incident pulse. If this condition
is satisfied, then the boundary conditions of the problem
are approximately satisfied, as we shall see. In other
words the procedure avoids the explicit boundary match-
ing required in a direct spatial solution [1]. In some sense
the method also achieves the result of methods [2-4] in
which the dielectric boundaries are replaced by a smooth
function that varies rapidly over a wavelength since in
this procedure also the interslab boundary conditions are
not explicitly invoked. Later we present an error analysis
that shows that the error of this procedure is of order dt?,
due to surface terms at a boundary during Fourier trans-
formation, terms that we drop.

In summary, we present a propagation algorithm ap-
propriate for the strongly refractive, the strongly
reflective, and the vector nature of Eq. (1). The method is
first presented for the scalar wave equation second order
in space and time, a case that describes the propagation
of TE modes in a slab, for which the second term in Eq.
(1) is zero. Then we present a generalization to a case in
which two vector components of Maxwell’s equations are
coupled, a case that describes the propagation of TM
modes in a slab. These calculations are simple enough to
demonstrate the computational method and are
benchmarked against analytic results. Although the TM
problem can be recast in the form of a scalar equation for
the magnetic field, it is still a limited test case, for the
electric field, to test our ability to solve the two-
component form of the Maxwell vector equations and de-
scribe the situation in which the electric field is discon-
tinuous across a boundary. However, we believe that the
applicability of our computational method extends in
principle to the full vector set. Finally, we also bench-
mark a calculation for two dielectric boundaries, i.e.,
three dielectric layers.

II. COMPUTATIONAL METHOD AND RESULTS
A. Propagation of TE modes

We illustrate our method by solving the wave equation
for a slab in x and z (transverse and propagation direc-
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tions, respectively) for an electric field polarized along y,
E,, and magnetic fields H, and H,. In region (1) with re-
fractive index n, the equation for the electric field is

2 92 ni @

E =0 (3)
ax2  9z? c¢? o’

where the magnetic fields have been eliminated in favor

of the single electric field. The spatial Fourier transform
of Eq. (3)is

ni 9 2|5 —
—;{gt—z‘}‘k Ey—O ) (4a)
k2=k2+k?. (4b)

At t=0, E, is chosen to be a time-independent Gaussian

. i(n kyz—wt)

centered on the forward-going plane wave, e ,
where ky=w/c.

Consider a region of dielectric n, whose boundary is

located at z =0 (Fig. 1) and thus is remote from the pulse

at initial time. We write the equation in transform space,

F,=0. (5)

The solutions of the two equations are written down
analytically for forward propagation over an interval dt,
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FIG. 1. Pulse intensity vs z at t =0 and ¢,,,, /2 (left side) and
at t,,, (right side) for n;=1 and n,=2 (top), n, =3 (middle),
and n, =4 (bottom). ¢, =16.
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Ey:e*ikcdt/nlﬁf , (6a)
Fy:e/-ikcdt/nzgj? ) (6b)

where E'J? is the transform from the previous step. The
updated field is constructed by backtransforming E, and
F, into the half spaces z <0 and z >0, respectively. The
cycle is repeated for each dt. For the first step E‘f is just
the transform of the initial pulse.

The error inherent in this procedure can be analyzed
by considering the term at the boundary z, =0 in Eq. (4a)
or Eq. (5), which we have dropped as negligible. With
reference to the former, where for simplicity we consider
only the z dimension, zero on the right-hand side is re-
placed by

R=c¢ "((dE, /dz), +iKE,(zy)] . 7
We assume that the field and its derivative at the bound-
ary are known from a previous time step. Solving the in-
homogeneous equation in transform space over an inter-
val dt, the solution has the form of Eq. (6a) plus the
remainder,
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FIG. 2. Pulse intensity vs z at t=0 and ?,,,, /4 (top) and at
tmax (bottom) for n, =% and n, =2. t,,,=16.
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R
k2
where the term in brackets in Eq. (7) has been held con-
stant over the interval d¢. On expanding the cosine in Eq.
(8) it is seen that this contribution is of order
R /2(cdt /n;)* and is neglected relative to —iE kedt /n,
from the form of Eq. (6a).

Henceforth we use the scaled variables x,,z, =kqx,k(z
and ¢, =wt and drop the subscripts in subsequent discus-
sions. In the numerical examples the widths of the initial
Gaussian are taken as 4k ~! and 3k ! in the x and z
directions, respectively. This means that the full width at
half maximum in the z direction in the plotted intensities
below is 20V In2, where o is the quoted Gaussian width
(i.e., 3k "' in Figs. 1 and 2 and 20k ~! in Figs. 7 and 8).
In the calculations shown in Figs. 1 and 3 the numbers
of spatial grid points are 257 and 513 for total grid sizes
of 50k ! and 40k ! in the x and z directions, respective-
ly, and the number of temporal grid points is 401 for
'max =160~ '. In the calculation shown in Figs. 2 and 5,
the total grid size in the z direction is 64k ~! and the
number of grid points in this direction is 1025, everything
else remaining the same as in Figs. 1 and 3. In Fig. 4,
'max =320 ! and the total grid size in the z direction is
128k !, with no change in the number of grid points.
We have used a version of the fast Fourier transform
(FFT) code [5] in these calculations.

E)=-—[1—cos(kecdt /n,)], (8)
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FIG. 3. Reflection (upper curve) and transmission (lower
curve) coefficients for n, =1 and n, =2 (top left), n, =3 (middle
left), and n,=4 (bottom left). Spectral power for n;=1 and
n,=2 (top right), n,=3 (middle right), and n,=4 (bottom
right).
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FIG. 4. Reflection (upper curve) and transmission (lower
curve) coefficients for n, =% and n,=2.

Our results are shown in Figs. 1-5. Figures 1 (left
side) and 2 (top) show the initial pulse and the pulse
athwart the boundary. In the latter snapshot, cleavage of
the pulse at the boundary to produce the transmitted
pulse is clearly visible and in Fig. 1 the emergence of the
reflected pulse from the backside of the incident pulse is
also visible. Figure 1 (right-hand side) and Fig. 2 (bot-
tom) at maximum time show the reflected and transmit-
ted pulses, where to very high accuracy the reflected
pulse has traveled backward to the starting point at
—8k ! appropriate for cleavage at t,,,/2 for n,=1
(Fig. 1) and to —24k ! appropriate for cleavage at
tmax /4 (Where ¢, =160~ ") for n;=1 (Fig. 2). Likewise
the transmitted pulse has traveled forward for ¢, /2 di-
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FIG. 5. Spectral power for n; =1 and n, =2.
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vided by n,=2,3,4 (Fig. 1) and 3¢ _,, /4 divided by n, =2
(Fig. 2).

The reflected and transmitted energies are measured
from the integral over x and z of the squared modulus of
the field. Figure 3 (left side) and Fig. 4 show the square
root of the normalized energy in the region x <O (top
curve) and x >0 (bottom curve). At maximum time these
agree to good accuracy with the formulas [6]
R=(ny,—n,)/(n,+n,) and T=2n,/(n,+n,), respec-
tively for plane waves with normal incidence on the
boundary.

Figure 3 (right-hand side) and Fig. 5 show the spectral
power, defined as the squared modulus of the axial
Fourier transform of the field. The positions of the peaks
give to very high accuracy normalized wave numbers,
equal to the indices of refraction in the transmitted re-
gion on the right-hand side of the origin and equal to the
negative of the indices of refraction in the reflected region
to the left of the origin.

Finally the propagation method satisfies to high accu-
racy a conservation theorem that the time required for
the pulse to traverse a given point is the same in both re-
gions of dielectric. This causes the shape of the transmit-
ted pulse to be compressed in the z direction (Figs. 1 and
2) such that its new width is n,w, /n,, giving to high ac-
curacy the conservation statement z=ct /n;. This rule is
observed to hold in all of the propagation snapshots, and
correspondingly the spectra (Figs. 3 and 5) are observed
to broaden. For example, the small oscillations near O in
Fig. 5 reflect an interference in the spectrum of the
reflected and transmitted waves for normalized wave
numbers —% and 2, respectively, where the overlap
occurs because the spectral power of the transmitted
wave is very broad, having the same width as the spectral
power of the transmitted wave in the —1 and 4 case in
Fig. 3. In other words the index jump is the same in both
cases, 4, giving the same spectral width, but line center is
at 2 in the former case such that the overlap of the
reflected and transmitted parts of the spectrum occurs.

B. Propagation of TM modes

The propagation of TE modes in a slab involves only a
single vector component of Maxwell’s equations. A more
stringent test of the generality of our computational
method is the propagation of TM modes because then the
electric vector is discontinuous across the boundary. For
the same geometry as that in Sec. IT A this calculation re-
quires that we solve the pair of coupled equations for vec-
tor components E, and E,,

@ ni@ d’E,
—_— = E =
dz2 ¢%? o2 | oxoz’ (92)
¢ ni @ | _ IE, b
ax2  c2 3 | F dzdx )

The Fourier transform of this pair can be diagonalized
and solved analytically. In transform space the solutions
can be expressed in terms of the TE solution that we ob-
tained in Sec. I A,
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ok,

Ex: Ey ’ (10a)
ny

- k. -

E=—""E, . (10b)

Equations (10a) and (10b) are solved in an interval dt and
backtransformed into the appropriate spaces, as de-
scribed in Sec. Il A. For normal incidence on the bound-
ary, as in Sec. IT A, the result is the same because E,
does not exist. However, for non-normal incidence
power is distributed between E, and E,. In our example
we choose the initial plane wave in E, to be
el[nlko(zcmbixSln¢)7wt], where $=45°. Then the transmis-
sion and reflection coefficients are given by [6]
2n n,cosi
T= ——————=0.37 for i=45°,
n%cosi+n1\/n%—n%sin2i

(11a)

n%cosi—nl\/n%—n%sinzi ) .
R= ——————=0.48 for [i=45°,
nacosi+n,V n—n?sin%

(11b)

where the values at 45° are for n; =1 and n, =4. For this
calculation the numbers of spatial grid points are 257 and
257 for total grid sizes of 75k ~! and 60k ~! in the x and z
directions, respectively, and the number of temporal grid
points is 401 for t,, =24w '. The reflected and
transmitted energies are measured from the integral over
x and z of the squared modulus of the field E,. (Note
that the TE and TM propagations are identical to the
plane-wave propagations with the E vector perpendicular
and parallel to the plane of incidence, respectively, eluci-
dated analytically by Jackson [6].) Figure 6 shows the
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FIG. 6. Reflection (upper curve) and transmission (lower
curve) coefficients for n; =1 and n, =4 for propagation of TM
modes at non-normal incident angle of 45°.

square root of the normalized energy in the region x >0
(bottom curve) and x <O (top curve). At maximum time
these agree respectively to good accuracy with the formu-
las in Egs. (11). Note that at initial time the normaliza-
tion is less than 1 because energy is shared between E,
and E,.

C. Propagation of TE modes through multiple boundaries

Yet another stringent test of the accuracy of our
method is the propagation through more than one dielec-
tric boundary, for which analytic results are readily avail-
able for plane waves and TE boundary conditions [7]. In
cases A and B our Gaussian-pulse results were directly
comparable to plane-wave results, which is obvious from
the independence of the reflection-transmission formulas
for plane waves on wave-number absolute value. This is
not the case for the calculations shown in Figs. 7 and 8 in
which a pulse propagates from a region of index 1
through region of index 2, which is 7.03k ~! units wide
and then back into a region of index 1. First the trans-
verse width of the pulse must be many wavelengths
(25k ~! here) so that the plane-wave results can be simu-
lated by propagating the pulse through the dielectric lay-
ers over a distance much less than a Rayleigh range,
which is zz =kw? here, where w=25k ~!. Also the
length of the pulse (20k ! here) must be large compared
to the width of the “potential well” through which the
pulse is passed. Otherwise it will be distorted by multiple
reflections or feedback, a transient phenomenon clearly
not described in the cw limit appropriate for a plane-
wave benchmark. Finally a quantitative comparison re-
quires that the analytic formulas be averaged with respect
to the distribution of wave numbers contained in the lon-
gitudinal Gaussian pulse. The appropriate average is
achieved by integrating the product, (reflection amplitude
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FIG. 7. Pulse intensity across a layer of higher index starting
at 0 and ending at 7.03k ~!. The inset shows a blowup near the
layer.
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X longitudinal Fourier transform of input field) over the
momentum-space variable. In contrast, Patriarca [8] has
shown how to inject a plane wave at a single spatial grid
point such that his numerical result is compared with the
analytic result at a single wave number.

Figure 7 shows an on-axis snapshot of the pulse being
transmitted through and reflected from the dielectric lay-
er starting at z=0 and ending at z=7.03k ~!. The inset
gives a blowup of the interference fringes to the left of
and within the layer. Since the squared modulus of the
field is being plotted, twice the number of wavelengths
appear. The wavelength within the layer is one-half the
wavelength to the left of the boundary because of the 2:1
index ratio, respectively.

Figure 8 shows an on-axis snapshot of the reflected and
transmitted pulses after separation. Conservation of en-
ergy is demonstrated by the sum of the peak heights to 1
to a good approximation. Also, the reflected peak height
agrees well with the averaged plane-wave result of 0.231.
Finally, conservation of energy is demonstrated again by
the greater width of the reflected pulse, which is con-
trolled by the group velocities in and out of the layer and
is observed to be the sum of the incident pulsewidth and
one-half the incident pulsewidth inside the layer caused
by twice the index inside the layer.

In the calculations shown in Figs. 7 and 8 the number
of temporal, transverse spatial, and longitudinal spatial
grid points is 801, 257, and 1025 for maximum variable
lengths of 1750w}, 150k !, and 300k ~ !, respectively. It
is found that the two-boundary calculation is an extreme-
ly sensitive test of the accuracy of the method.

III. SUMMARY AND CONCLUSIONS

In this paper a computational method has been
presented for solving Maxwell’s equations in a space con-
taining layered dielectrics. The method is based on tem-
porally evolving the solutions in momentum space over
an interval dt and then backtransforming into the regions
of separate dielectric. It is demonstrated that the bound-
ary conditions, although quite intricate for the vector set
of equations, are approximately satisfied if cdt/n,, is
small compared to the width of the incident pulse.
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0.40 J 3
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0.30 3 -
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o=, . =R

FIG. 8. Pulse intensity for propagation through a layer of
higher index after separation of the reflected and transmitted
pulses.

In Cartesian coordinates the method makes use of the
standard FFT routine [5], which is very fast on a vector
machine. The method is intended to replace finite-
difference algorithms [1], which are prone to numerical
instabilities and seem naturally unsuited to problems in
which regions of constant dielectric are separated by
sharp boundaries. The method is most useful for broad
bandwidth pulses and in regions of strong refraction in
which the change of index is large in passing through a
boundary such that one cannot avoid the nonstandard
(i.e., the nonparabolic) mathematical form in which a
function of space multiplies the second- or first-order
time derivative of the field.
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